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This paper examines the effect of asymmetry on a novel, speed dependent,
in-plane stress induction technique for rotating circular disks. Residual, in-plane
stresses are frequently introduced into circular saws to extend the range of stable
rotation speed. The new speed dependent technique considered here is
theoretically twice as effecive as traditional techniques. However, practical
realization of this new technique can introduce asymmetry into the in-plane stress
field, an effect that is normally not considered. In this paper, these asymmetries
are explicitly examined in order to formulate design rules for the new stress
induction technique. Finite element analysis indicates that at least five, evenly
spaced, concentrated, in-plane loads are required along the inner radius of the disk
to produce results identical to an equipollent, uniformly distributed load; four or
fewer concentrated loads produce noticeably poorer results due to asymmetry. In
performing these calculations, it was discovered that symmetry of the finite
element mesh is essential for accurate prediction of small and vanishing natural
frequencies. The viability of the new stress induction technique and the finite
element predictions were both then confirmed experimentally.
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1. INTRODUCTION

Residual, in-plane stresses are frequently introduced into industrial circular saws
to increase certain vibration frequencies of the saw. This process, termed
tensioning, increases the transverse stiffness of the saw during high speed rotation,
which reduces the transverse motions of the saw caused by cutting forces. Properly
tensioned saws can be thinner and can operate at higher speeds than untensioned
saws, both of which increase sawmill productivity.

One well known and commonly practiced tensioning technique is roll tensioning
[1–6]. In this technique, a thin, annular ring in the center of the saw is plastically
deformed by repeatedly rolling it between two, loaded wheels. The resulting
residual stresses increase the natural frequencies of those vibration modes with two
or more nodal diameters, but decrease the natural frequencies of those modes with
zero or one nodal diameter. If a saw is operating at a rotation speed at which the
lowest natural frequency measured in the stationary frame of reference has a mode
shape with two or more nodal diameters, roll tensioning will increase the
transverse stiffness of the saw. This is typically the case for industrial circular saws.
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Recently, Renshaw [7] proposed a novel tensioning strategy termed centripetal
tensioning that is theoretically twice as effective as traditional roll tensioning.
Centripetal tensioning works by having freely sliding masses rest along the inner
radius of the disk while it rotates. The masses press against the inner radius of
the disk with a force proportional to the square of the rotation speed, which in
turn produces in-plane stresses proportional to the square of the rotation speed.
Renshaw [7] showed that the benefits of tensioning are doubled when the residual
stresses are speed dependent in this manner rather than permanent, as they are
in traditional tensioning techniques.

In practice, however, the uniformly distributed masses used in describing
centripetal tensioning are a finite number of massive wedges resting against the
inner radius of the disk. Under ideal conditions, these wedges make full contact
with the inner radius of the disk over the complete arc of the wedge and produce
a contact pressure that is nearly uniform. However, since these wedges must be
able to move freely in the plane of the disk, it is possible, and perhaps even likely,
that the wedges will become cockeyed, in which case the contact pressure from
each wedge may approximate a concentrated load rather than a uniform pressure.
Under these conditions, the in-plane stress field in the disk will no longer be
axisymmetric and the benefits of centripetal tensioning will be reduced. The design
question then arises: how many wedges are required to achieve the benefits of
centripetal tensioning under the worst possible asymmetry?

Disk-based asymmetries in either the stress or geometry of a rotating disk
complicate the analysis of its response to stationary transverse loads since the
rotating asymmetries preclude a simple frequency analysis in the stationary frame
of reference. As a result, prior research on disk-based asymmetries has focused
almost exclusively on stationary disks. An exception is Mote [8] who developed
a finite element for the analysis of a slotted rotating plate by analyzing the disk
in the rotating frame of reference. More typically, Parker and Mote [9] examined
asymmetric tensioning in a stationary disk using the finite element method and
concluded that, in contrast to axisymmetric tensioning, all natural frequencies of
the disk could be increased by asymmetric stress fields. Yu and Mote [10] and Shen
and Mote [11–13] calculated the parametric resonance of asymmetric disks
subjected to rotating springs. Chen and Jhu [14] examined a spinning disk
subjected to a stationary edge load, which produces an asymmetric but
non-rotating stress field in the disk.

In this paper, finite element analysis is used to calculate the stress field and
natural frequencies of a rotating disk in the rotating frame of reference when the
inner radius of the disk is subjected to a series of evenly spaced, concentrated,
in-plane, speed dependent loads. These calculations indicate that at least five
concentrated loads are needed to fully achieve the benefits of centripetal
tensioning, with four or fewer concentrated loads being significantly less effective.
In performing these calculations, it was discovered that symmetry of the finite
element mesh is essential for accurate prediction of small and vanishing natural
frequencies. The accuracy of these predictions and the viability of centripetal
tensioning were then confirmed in a series of centripetal tensioning experiments.
This corroboration demonstrates that substantial improvements in tensioning
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practice can be achieved using speed dependent tensioning techniques. These new
techniques may lead to a new generation of circular saws with considerably higher
levels of performance than the existing generation of circular saws.

2. MATHEMATICAL MODELLING

A thin, axisymmetric, circular disk is transversely clamped at inner radius Ri and
free at outer radius Ro . The disk is of uniform thickness h, Young’s modulus E,
density r (mass per unit volume), and Poisson’s ratio n, and spins about its axis
of symmetry at a constant angular speed V*. W(T, R, u) is the transverse
displacement of the disk where T is time and polar co-ordinates (R, u) are fixed
on the rotating disk with the center of the disk at the origin. The in-plane,
axisymmetric stresses s*r , s*u , and t*ru are measured in the rotating frame of
reference. The equation of motion in the rotating frame of reference derived from
Kirchhoff plate theory with in-plane stress is [15].

rhW,TT − h(Rs*R W,R + t*RuW,u ),R /R− h(t*RuW,R + s*u W,u /R),u /R+D94W=0,

(1)

where 94 is the biharmonic operator, a comma indicates partial differentiation, and
D=Eh3/12(1− n2).

Dimensionless variables are defined by

r=R/Ro , w=W/h, t=TzD/rhR4
o , V=V*zrhR4

o /D ,

sr = s*r hR2
o /D, su = s*u hR2

o /D, tru = t*ru hR2
o /D. (2)

The clamping ratio is k=Ri /Ro . Under definitions (2), equation (1) becomes

w,tt −(rsrw,r + truw,u ),r /r−(truw,r + suw,u /r),u /r+94w=0, (3)

where 94 has been re-defined in terms of r instead of R. w satisfies clamped–free
boundary conditions

w=0 and w,r =0 at r= k,

w,rr + n(w,r /r+w,uu /r2)=0 at r=1,

(92w),r +(1− n)(w,ruu /r2 −w,uu /r3)=0 at r=1, (4)

where 92 is the Laplacian. The substitution

w(t, r, u)= eivtu(r, u), (5)

where i=z−1, converts equation (3) into the eigenvalue equation

−v2u−(rsru,r + truu,u ),r /r−(suu,u /r+ truu,r ),u /r+94u=0, (6)

where v is the natural frequency in the rotating frame of reference.
The stresses satisfy the plane stress equilibrium equations of linear elasticity:

sr,r +(sr − su )/r+ tru,u /r=−V2r, (7)

su,u /r+ tru,r +2tru /r=0, (8)
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subject to the boundary conditions

sr = so
r (u) and tru = to

ru (u) at r= k, (9)

sr = tru =0 at r=1. (10)

Since the solutions of equations (7) and (8) decouple from equation (6), they can
be solved first for sr , su , and tru and then these solutions can be plugged into
equation (6) as known functions during the determination of v and u(r).

For ideal centripetal tensioning, the stress boundary conditions (9) are the
axisymmetric conditions [7]

sr =−mV2 and tru =0 at r= k, (11)

where m is a fixed constant that represents dimensionless added mass, assumed
to be concentrated in a line around the inner radius r= k. m=0 represents an
annular disk with no traction at r= k which is often used to model rotating disk
systems [16].

The equations governing the motion of the disk in the stationary frame of
reference can be derived by transforming w, sr , su , tru , and equations (3), (4), and
(7)–(10) using the transformation [17]

u'= u−Vt. (12)

In the special case in which the stresses are axisymmetric (i.e., sr = sr (r),
su = su (r), tru =0), the resulting equation of motion is autonomous in time, and
the natural frequencies in the stationary frame of reference can be found using an
harmonic substitution similar to equation (5). In this special case, the eigenvalue
problem in either frame of reference is separable in u and the mode shapes have
the form

u(r, u)= einufn (r), (13)

where n=0, 21, 22, . . . is the number of nodal diameters in the mode shape.
A straightforward calculation shows that the natural frequencies in the stationary
frame of reference, l, are related to the natural frequencies in the rotating frame
of reference, v, by the relation

l=v2 nV. (14)

Those eigensolutions with the plus sign in equation (14) are associated with
circumferentially travelling wave solutions that move in the direction of rotation,
which are normally termed forward wave solutions, whereas those associated with
the minus sign in equation (14) are termed backward travelling wave solutions.

Figure 1 compares the natural frequencies of a typical, axisymmetric, rotating
disk with k=0·3 in both the rotating and stationary frames of reference. These
frequencies were calculated using the Galerkin method with ten orthonormal,
Chebyshev polynomials defining the separable, radial part of the eigenfunctions.
In the rotating frame of reference, all natural frequencies except n=0 are repeated
and all frequencies increase as V increases due to the tensile centripetal stresses
in the disk. However, in the stationary frame of reference, the natural frequencies
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Figure 1. Natural frequencies of a typical, axisymmetric, rotating disk with k=0·3 in (a) the
rotating frame of reference, and (b) the stationary frame of reference. (i, j) modes denote i nodal
circles and j nodal diameters.

associated with backward travelling waves initially decrease as V increases (except
for n=0 which does not decompose into forward and backward wave solutions)
and can become quite small. These small magnitude natural frequencies can lead
to significant vibration in rotating disk systems. The critical speed Vcr is defined
as the lowest angular velocity at which a backward natural frequency vanishes.
This is often the upper limit of rotation speed for rotating disk systems since the
disk can be resonated by stationary loads at that speed. For k= v=0·3, Vcr =6·6
and the vibration mode whose frequency vanishes at this speed has three nodal
diameters.

When the stresses are asymmetric and fixed on the rotating disk, the
transformation (12) produces an equation of motion with periodic coefficients,
e.g., the rotating stress fields. Consequently, the natural frequencies in the
stationary frame of reference cannot be calculated using a simple harmonic
substitution. The response and stability of stationary, asymmetric systems
subjected to moving loads has been predicted using parametric excitation analysis
by several researchers [10–13]. In the present case, a rigorous parametric analysis
could be done for the asymmetric, rotating disk subject to a load moving at a
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Figure 2. Sample meshes used in the finite element convergence study: (a) a symmetric mesh; (b)
an asymmetric mesh.

constant speed relative to the rotating disk to determine the speeds at which
resonance occurs. (The disk cannot be stationary since the asymmetric stresses are
generated only during rotation.) However, such an analysis and the development
of appropriate computational tools exceeds the scope of the present paper.
Instead, we seek a plausible analytical approach using existing computational tools
that will permit us to formulate design rules that can be verified experimentally.

T 1

Natural frequencies for an axisymmetric disk with and without mesh symmetry

Number of elements
ZXXXXXXXXCXXXXXXXXV Galerkin Percentage

Symmetric 72 288 648 1056 prediction error

Mode
(0,0) 0·4781 1·8551 2·1318 2·2588 2·3647 −4·48
(0,1) 13·2719 13·4771 13·5130 13·5169 13·5352 −0·14
(0,1) 13·2719 13·4771 13·5130 13·5169 13·5352 −0·14
(0,2) 24·6793 25·8315 26·0525 26·1153 26·2295 −0·44
(0,2) 24·6802 25·8318 26·0525 26·1153 26·2295 −0·44

Number of elements
ZXXXXXXXXCXXXXXXXXV Galerkin Percentage

Asymmetric 52 265 729 1029 prediction error

Mode
(0,0) 5·2279 3·6546 1·2716 0·2074 2·3647 −91·23
(0,1) 13·4579 13·6831 13·5946 13·5877 13·5352 0·39
(0,1) 13·4996 13·7233 13·6057 13·5890 13·5352 0·40
(0,2) 24·2087 25·8161 26·0813 26·1278 26·2295 −0·39
(0,2) 24·2634 25·8279 26·0864 26·1294 26·2295 −0·38
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Figure 3. Finite element convergence results for (a) symmetric and (b) asymmetric meshes using
four concentrated point loads along the inner edge of the disk.

A common rule of thumb for simplifying the analysis of rotating asymmetric
disks is to assume a priori that increases in natural frequency in the rotating frame
of reference reduce the transverse vibrations of the disk caused by stationary loads
[8, 9]. Although not rigorous, we adopt this ad hoc strategy here for reasons of
simplicity and practicality and define the frequency margin

FM=v− nV (15)

as a means of comparing the vibration frequencies of the disk with asymmetric
stress in the rotating frame of reference to those of an axisymmetric disk in the
stationary frame of reference. In the case of axisymmetric stresses, FM equals the
frequency of the backward travelling waves. In computing equation (15), n is half
the number of nodal lines extending from r= k to r=1. Because of the
asymmetry, these may no longer lie along radii of the disk. According to our ad
hoc design rule, FM should be as large as possible to reduce disk vibration.
Vanishing FM may indicate particularly high sensitivity to transverse loads since
FM vanishes at the critical speeds of an axisymmetric disk.
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Figure 4. Natural frequencies in the rotating frame of reference as a function of V for p=3
concentrated point loads (squares interpolated with the solid line) compared with the axisymmetric
p:a frequencies (dashed line).

3. ASYMMETRIC SPEED DEPENDENT TENSIONING

We wish to consider the case where the axisymmetric inner boundary condition
for speed dependent tensioning (equation (11)) is replaced by a set of p evenly
spaced, equipollent, concentrated loads, e.g.,

tru =0 and sr =−
2pmV2

p
d(u−2pj/p) at r= k, j=0, 1, . . . , p−1, (16)

where d( · ) is the Dirac delta function. These boundary conditions simulate the
worst case asymmetry in the physical realization of equation (11) which occurs
when all wedges become sufficiently cockeyed that they make contact with the disk
only along a sharp edge. As p:a, the axisymmetric boundary condition (11) is
recovered. It is assumed that more axisymmetric loading (e.g., when the wedges

Figure 5. Same as Figure 4 with p=4.
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Figure 6. Same as Figure 4 with p=5.

are flush with the disk over complete sectors) will produce tensioning results that
are as good, if not better, than this worst case scenario.

We used SDRC’s I-deas finite element program to mesh and solve these
problems with bilinear, quadrilateral elements using the Lanczos algorithm.
Convergence studies were performed using two kinds of meshes: a mapped mesh
with a regular pattern of symmetric elements, and a ‘‘free mesh’’, in which the
computer automatically fills the mesh area with an asymmetric pattern of elements.
Examples of symmetric and asymmetric meshes are shown in Figure 2. The
problem used for the convergence study was the axisymmetric centripetal
tensioning problem defined by equation (1) with m=1·33, k=0·3, and V=13.
These conditions represent almost optimum centripetal tensioning and are
characterized by a small magnitude (0,0) natural frequency where (i, j) indicates
modes with i nodal circles and j nodal diameters. (The circles and diameters may

Figure 7. The angular speed at which FM=0, 1, 2, and 3 as a function of p. p:a represents
the axisymmetric results for which FM represents a natural frequency.
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Figure 8. A schematic of the centripetal clamp design.

be imperfect when asymmetric stresses are present.) The results of this convergence
study are shown in Table 1.

In most cases, the finite element natural frequencies converge to the values
predicted using Galerkin’s method as the number of elements increases, and is
generally within a few percent of that value once there are more than about 500
elements. The single exception to this is the finite element prediction of the (0,0)
natural frequency using the asymmetric mesh. The predicted frequency does not
appear to converge as the number of elements increases and occasionally is very
close to vanishing. The vanishing of this frequency is an important parameter
because it limits the tensioning technique, and its prediction is crucial to this
analysis. Note that with the symmetric mesh there is no convergence problem.

Figure 9. Different size wedges used to achieve m=0·5, 1·4, 2·0, and 5·5. A 120 ruler is shown
on the left.
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Figure 10. The centripetal clamp experimental set-up with m=2·0.

Furthermore, the only difference in the results is the mesh since the same code is
used in both cases.

Note also that even though the disk is axisymmetric, two vibration frequencies
are listed for the (0,1) and (0,2) modes in each case even though it is known that
these vibration frequencies are repeated. The finite element predictions of these
frequencies will only be repreated if the discretization possesses the same
axisymmetry as the disk. Even for the symmetric mesh, the finite element results
do not possess perfect axisymmetry since a rotation of half an element width does
not give the same discretization. However, this effect is small. For the symmetric
mesh, the frequencies are the same for 648 and 1056 elements. The error in the
other two cases is less than 0·004%. The discrepancies for the asymmetric mesh
are, of course, larger since this mesh is not axisymmetric at all, but the
discrepancies are still less than 1%.

Meshing problems can also occur when the stresses in the rotating disk are not
symmetric. Figure 3 shows the natural frequencies of the same centripetal
tensioning problem except with equation (11) replaced by equation (16) with p=4.
Although there is no simple Galerkin solution with which to compare these results,
all frequencies appear to converge except the (0,0) mode frequency using the
asymmetric mesh. In fact, the asymmetric mesh results predict disk buckling at 530
elements. Note also that the (0,2) mode has split into two distinct frequencies in
both meshes due to the asymmetric stress. (The effects of asymmetry could be
analyzed using a standard eigenvalue perturbation approach if the stress problem
could be easily decomposed into a symmetric problem with a small perturbation
[10]. Such an approach was not pursued here.)

Perkins and Mote [18] observed that discretizations such as finite element
meshes that did not preserve the geometric symmetry of a problem sometimes
produced spurious frequency results. A similar effect appears to occur in this
problem for small magnitude frequencies of a rotating disk. These frequencies do
not appear to converge properly in the finite element method as the number of
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elements increases unless the elements are symmetric. Subsequent results in this
paper were all generated using symmetric meshes.

Figures 4–6 show the natural frequencies predicted by the finite element method
for asymmetric boundary conditions (16) with p=3, 4, and 5 compared with the
axisymmetric natural frequencies.

For p=3 (Figure 4), there are significant frequency deviations for the (0,0),
(0,1), and (1,0) modes and modest deviations for the other modes. However,
modest differences in natural frequency in the rotating frame of reference can
produce substantial differences in FM when n$ 0. For example, for the (0,3) mode
at V=10, v=29·7 when p=3 as compared to v=30·9 under axisymmetric
boundary conditions (11), which is only a 3·9% difference. The associated
frequency margins computed using equation (15) are FM=−0·3 and FM=0·9
which represent a 400% difference and have dramatically different stability
implications.

Figure 11. Experimentally measured (diamonds) and theoretically predicted (solid lines) natural
frequencies in the stationary frame of reference as functions of rotation speed for: (a) m=0; (b)
m=1·4; (c) m=2·0; and (d) m=5·5.
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T 2

Comparison of theoretical and experimental critical speeds
from the data in Figure 11. The critical speed for m=5.5 was

too high to be measured with the set up described

Predicted Measured Percentage
m critical speed (r.p.m.) critical speed (r.p.m.) error

0 1861 1862 0·1
1·4 2111 2044 3·2
2·0 2252 2238 0·6
5·5 3079 q2400 –

For Vq 14, the finite element data is shown but not interpolated because the
asymmetry is so great that it is difficult to distinguish and somewhat arbitrary to
assign the (0,0), (0,1), and (1,0) modes to a particular frequency. The natural
frequencies were also calculated for p=2, but the asymmetry in the stresses was
so large for this case the natural frequencies were not even worth comparing to
the axisymmetric case. It suffices to say that these results are not comparable to
axisymmetric tensioning.

The case p=4 (Figure 5) shows significant frequency variations in the (0,0),
(0,1), and (1,0) modes and modest variations in the other modes, but these
variations are less than they are for p=3. For the (0,2) mode, v splits into two
distinct frequencies because of the asymmetry of the stress [10]. This split is so large
that the frequency margin of the (0,2) mode vanishes before the (0,3) mode. This
is the opposite of what happens in axisymmetric tensioning.

The results for p=5 (Figure 6) are essentially identical to the axisymmetric case
for VQ 13. There are variations in the (0,0) and (1,0) modes, but the frequency
margins for these modes are still very close to the axisymmetric predictions.
Additional calculations for p=6, 7, and 8 showed even less differences with the
axisymmetric predictions.

The angular speed at which the minimum FM among all vibration modes first
equals 0, 1, 2, and 3 is shown as a function of p in Figure 7. This graph can be
used to summarize the effect of asymmetric tensioning by comparing the
asymmetric results (finite p) to the axisymmetric results (p=a). For the crucial
case where the frequency margin first vanishes, pe 5 in order to produce results
identical to the axisymmetric case. For p=3 and 4, the speed at which FM
vanishes is 23·0% (V=9·7) and 13·5% (V=10·9) below the speed at which
axisymmetric stresses produce vanishing FM (V=12·6). This is also true for
FM=1, but for FM=2 and 3, p can be somewhat smaller without significantly
altering the speed at which the frequency margin is achieved. For FM=2 and 3,
however, the relative increase in natural frequency from the case where no
tensioning is applied (p=0) is small. In these cases, the benefits of centripetal
tensioning may be marginal.
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In summary, therefore, for devices that operate at a large fraction of critical
speed, i.e., near FM=0, no fewer than five wedges are recommended as a general
design rule when centripetal tensioning is used.

4. EXPERIMENTAL RESULTS

The design guidelines developed in the previous section as well as the practical
viability of centripetal tensioning were verified in a series of experiments. A 30-cm
diameter, 0·5-mm thick, aluminum disk was attached to a brushless DC motor
using a special clamp designed to produce centripetal clamping results for different
values of m. A schematic of the clamp is shown in Figure 8. The disk is supported
between two O-rings that control the transverse position of the disk while allowing
it to expand radially. A set of six massive wedges are inserted into the clamp so
that a tab at one end of the wedge lies between the shaft of the motor and the
inner edge of the disk. A tab on the other end of the wedge is supported by the
other end of the clamp. During rotation, each of the six wedges is flung outwards
with a force proportional to the square of the rotation speed, and that load is
divided between the two tabs on each wedge. Thus, the inner edge of the disk
experiences a speed dependent load during rotation. Different tension magnitudes
m were achieved using different size wedges. Figure 9 shows the wedges used to
achieve centripetal clamping with m=0·5, 1·4, 2·0, and 5·5. Figure 10 shows the
experimental set-up with the m=2·0 wedges in place. The central hole of the disk
was 5 cm in diameter giving k=0·167, and the O-rings were 6·6 and 9·8 cm in
diameter. In doing the theoretical predictions for this experiment, the disk was
assumed to be transversely pinned at each O-ring and free at the inner and outer
radius. For this configuration, the optimum centripetal tensioning occurs with
m1 5·5.

For each set of wedges, the disk was spun at speeds ranging from 0 to
2400 r.p.m. The disk was excited manually by lightly striking it with a steel
hammer and its transverse displacement was measured using a Philtec photonic
sensor with a sensitivity of 1·0×10−4 m/V. The autospectrums of the vibration
signal between 0 and 150 Hz were measured three times using eight averages, and
then each of these three results were averaged.

The measured and predicted natural frequencies for m=0, 1·4, 2·0 and 5·5 are
shown in Figure 11. Overall there is excellent agreement between the
measurements and the theoretical predictions. This is particularly true for the
lowest natural frequencies, which are the crucial ones in this experiment. The
predicted and measured critical speeds for each disk are shown in Table 2. In these
experiments, the measurements were stopped at 2400 r.p.m. because of an
aerodynamic instability of the disk. This aerodynamic instability occurs at the
speed expected from other experimental studies [19] and is unrelated to the
effectiveness of centripetal tensioning. Consequently, for the case of m=5·5 which
has a critical speed greater than 2400 r.p.m., it was not possible to measure the
critical speed. However, the agreement of the lowest frequencies between the
experimental and theoretical results up to 2400 r.p.m. is excellent.
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For the other values of m, there is excellent agreement between the predicted
and measured critical speeds, with errors less than 4%. These results corroborate
the theoretical predictions and modelling done by Renshaw [7] and confirm that
a six-wedge design does not suffer any asymmetric degradation.

There are, however, more vibration frequencies on these curves than predicted
by the axisymmetric analysis. Some frequencies appear to have been split due to
asymmetry and show two separate sets of frequency measurements following a
single analytical prediction. In other cases, frequency deviations may result from
effects such as aerodynamic coupling, coupling between the disk and the wedges,
and asymmetry of the disk (including runout, residual stresses and warping). For
example, in Figure 11(d), there are a number of measured frequencies between 40
and 50 Hz for rotation speeds above 2000 r.p.m. This is just before aerodynamic
instability occurs, and one can guess that aerodynamic forces may be responsible
in part for these frequencies. While some frequency deviations could perhaps be
identified with more sophisticated analyses, this has not been attempted here.

5. CONCLUSIONS

The effect of asymmetry on centripetal tensioning of high speed rotating disks
has been studied using the finite element method. The principal findings of this
analysis are as follows. (1) A minimum of five concentrated point loads distributed
along the inner edge of a rotating disk are as effective as an equipollent, uniformly
distributed load for centripetal tensioning. Four or fewer concentrated loads
produce degraded tensioning results due to asymmetry of the tensioning stresses.
(2) In performing finite element analysis of a rotating circular disk, symmetric
finite element meshes should be used to avoid spurious frequency results that can
occur using asymmetric meshes. (3) Experimental results using a six-wedge
centripetal tensioning design corroborate both the theoretical predictions of
centripetal tensioning modelling and the design rules developed here.
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